This article was downloaded by:
On: 23 January 2011
Access details: Access Details: Free Access
Publisher Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 3741 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title \sim content=t713455674

Synthesis and crystal structure of a heterobinuclear complex

$\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{PhPPy}_{2}=\right.$ bis(2-pyridyl)phenylphosphine)

Tianle Zhang ${ }^{\text {a }}$; Yu Qin; Deyou Wu ${ }^{\text {a }}$; Chenggang Wang ${ }^{\text {b. }}$; Changlin Liu ${ }^{a}$
${ }^{\text {a }}$ Department of Chemistry, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China ${ }^{\text {b }}$ Department of Chemistry, Huazhong Normal University, Wuhan, Hubei 430079, P.R. China

To cite this Article Zhang, Tianle, Qin, Yu , Wu, Deyou, Wang, Chenggang and Liu, Changlin(2005) 'Synthesis and crystal structure of a heterobinuclear complex $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}\left(\mathrm{PhPPy}_{2}=\operatorname{bis}(2-\right.$ pyridyl $)$ phenylphosphine)', Journal of Coordination Chemistry, 58: 16, 1485-1491
To link to this Article: DOI: 10.1080/00958970500236621
URL: http://dx.doi.org/10.1080/00958970500236621

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and crystal structure of a heterobinuclear complex $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}$ (PhPPy $_{2}=$ bis(2-pyridyl)phenylphosphine)

TIANLE ZHANG* \dagger, YU QIN, DEYOU WU \dagger, CHENGGANG WANG \ddagger and CHANGLIN LIU \dagger
\dagger Department of Chemistry, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P.R. China
\$Department of Chemistry, Huazhong Normal University, Wuhan, Hubei 430079, P.R. China

(Received in final form 10 December 2004)

Abstract

The mononuclear palladium(II) complex trans- $\left[\mathrm{PdCl}_{2}\left(\mathrm{PhPPy}_{2}\right)_{2}\right]$ (1) reacts with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ to afford the heterobinuclear $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ (2), bridged by two PhPPy_{2} ligands in a new mode. Complex 2 crystallizes in space group $P 2_{1} / c$ with $a=12.947(1), b=9.142(1), c=33.454(2) \AA, \beta=99.698(1)^{\circ}$. The copper(I) and palladium(II) ions in 2 adopt distorted tetrahedral and square-planar geometry, respectively. At room temperature, the complex is photoluminescent in solution.

Keywords: Palladium(II)-copper(I) complex; Crystal structure; 2-Pyridylphosphine ligand

1. Introduction

The coordination chemistry of 2-pyridylphosphine ligands $\mathrm{PPh}_{3-n}(\mathrm{Py})_{n}(n=1-3$; Py $=2$-pyridyl), has gained considerable attention in the past 30 years [1]. As a bridging ligand, $\mathrm{Ph}_{2} \mathrm{PPy}$ has been widely used to construct homo- and hetero-binuclear complexes to study metal-metal bonding, focusing on the interaction between low-valent transition metal $(\mathrm{Fe}(0), \mathrm{Ru}(0))$, and metal atoms/or ions with d^{10} electronic configuration, such as $\mathrm{Cu}(\mathrm{I}), \mathrm{Zn}(\mathrm{II}), \mathrm{Hg}(\mathrm{II})$ [2]. Compared to $\mathrm{Ph}_{2} \mathrm{PPy}$, the coordination modes of bis(2-pyridyl)phenylphosphine (PhPPy_{2}) are complicated due to the increase of coordination atoms, not only acting as monodentate [3, 4], but also bidentate (chelating or bridging) [5-7] and tridentate (bridging) [3, 8]. Although there are several complexes reported containing PhPPy_{2} ligands, including the crystal structures of $\left[\mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{PhPPy}_{2}-\mathrm{P}, \mathrm{N}, \mathrm{N}^{\prime}\right)\right] \mathrm{PF}_{6} \quad[8]$, cis- $\left[\mathrm{PhPPy}_{2}\right]_{2} \mathrm{PdCl}_{2}$ [4], trans-$\mathrm{Mo}_{2}\left(\mu-\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}\left(\mathrm{PhPPy}_{2}\right)_{2}$ [7] and $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{Pt}(\mu-\mathrm{PPhPy} 2) \mathrm{Rh}(\mathrm{COD})\right.$] [9],

[^0]there are few reports on the interaction between high-valent transition metals, such as $\operatorname{Pd}(\mathrm{II}), \mathrm{Pt}(\mathrm{II})$, and metal ions with d^{1-10} electronic configurations [9]. In fact, interaction between these metals in polynuclear transition metal complexes is an important and exciting topic, due to the versatile chemical and physical properties that such complexes exhibit [10]. Recently a project was initiated to study self-assembly of polynuclear complexes and metal-metal bonding, by using trans $-\mathrm{PdCl}_{2}\left(\mathrm{PhPPy}_{2}\right)_{2}$ (1) as starting material. It is proposed that metal ions can be used to connect trans$\mathrm{PdCl}_{2}\left(\mathrm{PhPPy}_{2}\right)_{2}$ molecules to form polynuclear complexes by coordination to free pyridyl groups in trans $-\mathrm{PdCl}_{2}\left(\mathrm{PhPPy}_{2}\right)_{2}$ with possible metal-metal interaction. In this article, a reaction of trans $-\mathrm{Pd}\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{Cl}_{2}$ (1) with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ to give a new hetero-binuclear complex $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}$ (2) is described, not the expected polynuclear complex, in which PhPPy_{2} exhibits a new coordination mode. Herein the synthesis and crystal structure of $\mathbf{2}$ as well as a convenient route to prepare PhPPy_{2} are reported.

2. Experimental

2.1. General details

All synthetic procedures were performed under an atmosphere of dry argon using Schlenk techniques. Solvents were dried and distilled by standard methods. The chemicals and reagents were obtained commercially and used with further purification. The salt $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right]\left[\mathrm{ClO}_{4}\right]$ [11] and phenylphosphine $\left(\mathrm{PhPH}_{2}\right)$ [12] were prepared according to literature methods. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian mercury-Vx 300 MHz instrument. Infrared spectra were recorded from KBr disks on a Bruker Equinox 55 spectrometer in the region $400-4000 \mathrm{~cm}^{-1}$. Ultraviolet and emission spectra were measured on a Perkin-Elmer UV-240 spectrometer and a HITACHI F-4500 Fluorescence Spectrophotometer, respectively.

2.2. Synthesis of PhPP_{2}

Reaction of a suspension of lithium phenylphosphinidide (PhPLi_{2}), generated by treating $\mathrm{PhPH}_{2}(1 \mathrm{~mL}, 0.009 \mathrm{~mol})$ with 2 equiv. n-butyllithium ($2.5 \mathrm{~mol} \mathrm{~L}^{-1}, 7.27 \mathrm{~mL}$), with 2 equiv. 2-chloropyridine $(1.72 \mathrm{~mL}, 0.018 \mathrm{~mol})$ in benzene yielded a dark-red solution immediately, and finally a pale yellow suspension, from which PhPPy_{2} was obtained as a pale yellow solid after purification $(2.01 \mathrm{~g}, 83 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, ppm): 8.695 ($2 \mathrm{H}, \mathrm{d}, J=4.5 \mathrm{~Hz}, \mathrm{Py}$), $7.1-7.7$ ($11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{Py}$).

2.3. Synthesis of $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}$ (2)

The mononuclear palladium(II) complex trans $-\mathrm{Pd}\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{Cl}_{2}$ (1) (20.2 mg, $0.028 \mathrm{mmol})$ prepared by reaction of trans $-\mathrm{Pd}(\mathrm{PhNHEt})_{2} \mathrm{Cl}_{2}$ [13] with PhPPy_{2}, and $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}(9.4 \mathrm{mg}, 0.028 \mathrm{mmol})$ were dissolved in 5 mL dichloromethane to give an orange solution immediately. After stirring overnight at room temperature, a crude product was obtained as a pale yellow precipitate. Red-orange crystals of $\mathbf{2}$ $(22.2 \mathrm{mg}, 82.2 \%)$ were obtained by slow diffusion of diethyl ether into an acetonitrile
solution of the crude material. IR (KBr), $\nu\left(\mathrm{cm}^{-1}\right)$: 1630, 1090, $623\left(\mathrm{ClO}_{4}^{-}\right) ; 1578,1429$, 3057 (Ph, Py). UV, $\lambda_{\max }(\mathrm{nm})\left(\varepsilon / 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right): 228(0.911), 264(0.663)$.

2.4. X-ray diffraction study of 2

Intensity measurements were collected on a Bruker Smart CCD diffractometer with graphite-monochromated $\mathrm{Mo}-K_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. All calculations were performed using the SHELXTL package. The crystal structure was solved by direct methods and refined by full-matrix least squares. The detailed crystal data and structure refinement parameters are summarized in table 1.

3. Results and discussion

3.1. Synthesis

The heterobinuclear complex bis(2-pyridyl)phenylphosphine (PhPPy_{2}) was first prepared by Mann and Watson [14] from 2-pyridylmagnesium bromide and PhPCl_{2} in low yield. Later Schmidbaur and Inoguchi [15] and Budnikova et al. [16] improved the yields to 39 and 68% by using complicated synthetic routes. In this work, treatment of diphenylphosphine with 2 equiv. n - BuLi yielded PhPLi_{2}, which subsequently reacted with 2 equiv. 2-chloropyridine to afford PhPPy_{2} in 83% overall yield (scheme 1). Compared to methods in the literature, this one-pot synthetic route is convenient.

Table 1. Crystallographic data for $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}$ (2).

Formula	$\mathrm{C}_{36} \mathrm{H}_{32} \mathrm{Cl}_{3} \mathrm{CuN}_{6} \mathrm{O}_{4} \mathrm{P}_{2} \mathrm{Pd}$
F_{w}	950.94
Crystal system	Triclinic
Space group	$P 2_{1} / c$
$a, b, c(\AA)$	$12.947(1), 9.142(1), 33.454(2)$
$\alpha, \beta, \gamma\left(^{\circ}\right)$	$90,99.698(1), 90$
$V\left(\AA^{3}\right)$	$3903.0(5)$
$T(\mathrm{~K})$	$293(2)$
Z	4
$D_{\mathrm{c}}\left(\mathrm{mg} \mathrm{m}^{-3}\right)$	1.479
$F(000)$	1736
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.331
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.40 \times 0.36 \times 0.20$
$h k l$ ranges	-10 to $17,-11$ to $11,-43$ to 41
Reflections collected/unique	23714,9368
Data, parameters	9368,480
$R_{1}, w R_{2}$	$0.0592,0.1282$
Largest difference in peak and hole $\left(\mathrm{e} \AA^{-3}\right)$	$0.921,-0.414$

Scheme 1. One-pot synthesis of ligand PhPPy_{2}.

Scheme 2. Synthesis of $\left[\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right] \mathrm{ClO}_{4}$.

Figure 1. An ORTEP plot of the complex cation, $\left[\left(\mathrm{PhPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right]^{+}$, with crystallographic numbering scheme. The ClO_{4}^{-}anion and the hydrogen atoms are omitted for clarity.

Complex 1 was prepared from trans- $\mathrm{Pd}(\mathrm{PhNHEt})_{2} \mathrm{Cl}_{2}$ in a similar way to trans$\left[\mathrm{Pd}(\text { dpnapy })_{2} \mathrm{Cl}_{2}\right][17]$. Direct reaction of $\mathbf{1}$ with $\left[\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{4}\right] \mathrm{ClO}_{4}$ yielded 2, during which a color change was observed from yellow to orange. X-ray diffraction studies confirmed that in 2, one palladium and one copper atoms are bridged by two cis- PhPPy_{2} ligands to form a dinuclear complex (scheme 2). Each metal atom binds to one Cl , one P in PhPPy_{2}, and two N atoms from another PhPPy_{2} ligand. Interestingly, one Cl atom and one PhPPy_{2} in trans $-\mathrm{Pd}\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{Cl}_{2}$ have migrated from the $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Cu}(\mathrm{I})$, similar to that observed in preparation of $\mathrm{Pd}_{2}\left(\mathrm{PhPPy}_{2}\right)_{2} \mathrm{Cl}_{2}$.

3.2. Crystal structure

The molecular structure of complex $\mathbf{2}$ was measured by single crystal X-ray crystallography. There is one perchlorate anion in this molecule, which is far from the cation of complex 2, $\left[\left(\mathrm{PhPy}_{2}\right)_{2} \mathrm{PdCuCl}_{2}\right]^{+}$. The ORTEP plot of the complex cation is shown in figure 1, with selected bond lengths and angles in table 2. The coordination environment around the palladium atom in $\mathbf{2}$ is slightly distorted square planar, typical for

Table 2. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for 2.

Bond distances			
$\mathrm{Cu}(2)-\mathrm{Cl}(1)$	$2.302(2)$	$\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$2.286(1)$
$\mathrm{Cu}(2)-\mathrm{P}(1)$	$2.217(1)$	$\mathrm{Pd}(1)-\mathrm{P}(2)$	$2.240(1)$
$\mathrm{Cu}(2)-\mathrm{N}(2)$	$2.159(4)$	$\mathrm{Pd}(1)-\mathrm{N}(1)$	$2.072(4)$
$\mathrm{Cu}(2)-\mathrm{N}(3)$	$2.061(4)$	$\mathrm{Pd}(1)-\mathrm{N}(4)$	$2.047(4)$
Bond angles			
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{N}(2)$	$91.92(15)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{N}(1)$	$87.19(14)$
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{P}(1)$	$132.63(12)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$95.36(10)$
$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{P}(1)$	$107.10(11)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$	$164.82(11)$
$\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	$100.15(13)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$177.41(11)$
$\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	$98.30(11)$	$\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$90.65(11)$
$\mathrm{P}(1)-\mathrm{Cu}(2)-\mathrm{Cl}(1)$	$118.61(6)$	$\mathrm{P}(2)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$	$87.09(4)$

$\mathrm{Pd}(\mathrm{II})$ complexes. The angles of $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{Cl}(2)$ and $\mathrm{N}(1)-\mathrm{Pd}(1)-\mathrm{P}(2)$ are $177.41(11)^{\circ}$ and $164.82(11)^{\circ}$, respectively. The $\mathrm{Pd}(1)-\mathrm{P}(2)$ distance is $2.240(1) \AA$. The $\mathrm{Pd}-\mathrm{N}$ distances are $2.072(4) \AA$ and $2.047(4) \AA$, similar to $\mathrm{Pd}(\mathrm{III})-\mathrm{N}$ distance $(2.034 \AA)$ in a dinuclear $\mathrm{Pd}(\mathrm{III})$ complex, $\mathrm{Pd}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}$ [18], and shorter than $\mathrm{Pd}(\mathrm{II})-\mathrm{N}(2.128 \AA$, $2.127 \AA$) in $\mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\mathrm{PPy}_{3}\right)_{2}\left(\mathrm{MeO}_{2} \mathrm{CC}=\mathrm{CCO}_{2} \mathrm{Me}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ [6], indicating a strong interaction between $\mathrm{Pd}(\mathrm{II})$ and N atoms. In addition, the distance of $\mathrm{Pd}-\mathrm{Cl}(2.286(1) \AA$ A) is short, compared to that of $\operatorname{Pd}(\mathrm{II})-\mathrm{Cl}(2.357 \AA, 2.349 \AA)$ in cis $-\mathrm{Pd}\left(\mathrm{PhPPy}_{2}\right) \mathrm{Cl}_{2}$ [4] and $\mathrm{Pd}(\mathrm{III})-\mathrm{Cl}(2.474 \AA)$ in $\mathrm{Pd}_{2}(\mathrm{hpp})_{4} \mathrm{Cl}_{2}$ [18]. The angles of $\mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{P}(1)$ $132.63(12)^{\circ}, \quad \mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{P}(1) \quad 107.10(11)^{\circ}, \quad \mathrm{N}(3)-\mathrm{Cu}(2)-\mathrm{Cl}(1) \quad 100.15(13)^{\circ}$ and $\mathrm{N}(2)-\mathrm{Cu}(2)-\mathrm{Cl}(1) 98.30(11)^{\circ}$ indicate that the copper(I) atom adopts a significantly distorted tetrahedral geometry. Two $\mathrm{Cu}-\mathrm{N}$ distances are 2.061(4) \AA for $\mathrm{Cu}(2)-\mathrm{N}(3)$ and $2.159(4) \AA$ for $\mathrm{Cu}(2)-\mathrm{N}(2)$, close to the $\mathrm{Cu}-\mathrm{N}$ bond lengths in $\left[\mathrm{Cu}_{3}(\mu \text {-dpnapy })_{3}\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]\left[\mathrm{ClO}_{4}\right]_{3}(1.975-2.064 \AA),\left[\mathrm{Cu}(\right.$ bpy $\left.)(\text { dpnapy })_{2}\right]\left[\mathrm{ClO}_{4}\right](2.066 \AA$, $2.073 \AA)$, and $\left[\mathrm{Cu}_{2}(\mu \text {-dpnapy })_{3}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ (2.106-2.239 $\left.\AA\right)$ [19]. The bond length of $\mathrm{Cu}-\mathrm{P}$ in 2 is $2.217 \AA$, slightly shorter than that found in $\left[\mathrm{Cu}_{2}(\mu \text {-dpnapy })_{3}\right]\left[\mathrm{ClO}_{4}\right]_{2}$ $(2.240 \AA)$ [19]. The $\mathrm{Cu}-\mathrm{Cl}$ distance of $2.3024(15) \AA$ is normal, close to that in $\left[\mathrm{Cu}_{3}(\mathrm{dpmp})_{2}(\mathrm{MeCN})_{2}(\mu-\mathrm{Cl})_{2}\right] \mathrm{ClO}_{4}(2.345-2.413 \AA)$ [20]. In complex 2, the long $\operatorname{Pd}(\mathrm{II}) \cdots \mathrm{Cu}(\mathrm{I})(3.278 \AA)$ distance indicates that there is no interaction between $\operatorname{Pd}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{I})$ metal ions.

In PhPPy_{2}-containing mononuclear complexes, the PhPPy_{2} ligand coordinates to metals by phosphorus and/or nitrogen atoms as a monodentate ligand in $\left[\mathrm{Mo}(\mathrm{CO})_{5}\left(\mathrm{PhPPy}_{2}-\mathrm{P}\right)\right]$, and a chelating ligand in $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mathrm{PhPPy}_{2}\right)$ [3], $\left[\mathrm{Mo}\left\{\eta^{3}-\operatorname{allyl}\right\} \mathrm{Br}(\mathrm{CO})_{2}\left(\mathrm{PhPPy}_{2}-\mathrm{P}, \mathrm{N}\right)\right]$ [5] and $\left[\mathrm{MoI}_{2}(\mathrm{CO})_{3}\left(\mathrm{PhPPy}_{2}-\mathrm{N}, \mathrm{N}^{\prime}\right)\right]$ [3]. In oligomer $\left\{\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu-\mathrm{PhPPy}_{2}\right)\right\}_{n}[3]$, it was proposed that P atom in PhPPy_{2} coordinated to one Mo , and two N atoms in the same ligand bonded to another Mo atom, connecting $\mathrm{Mo}(\mathrm{CO})_{3}\left(\mu-\mathrm{PhPPy}_{2}\right)$ monomers to form an oligomer, based upon data from NMR and IR spectra [3]. In the crystal structure of complex 2, clearly PhPPy_{2} ligands coordinate to $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Cu}(\mathrm{I})$ in this new mode.

3.3. Photoluminescent properties

Numerous $\mathrm{Cu}(\mathrm{I})$-phosphine complexes have been investigated for their luminescent properties [21]. At room temperature, complex $\mathbf{2}$ in acetonitrile displays photoluminescence (figure 2). The structureless emission band is located around 433 nm . For comparison, the emission spectra of free ligand and complex 1 were measured. Free ligand

Figure 2. Emission spectrum of $\mathbf{2}$ in the acetonitrile solution at room temperature. Excitation wavelength 383 nm .
is photoluminescent ($\lambda_{\max }^{\mathrm{em}}=380 \mathrm{~nm}$), and complex $\mathbf{1}$ exhibits similar emission to that of complex 2 except for its low intensity. The obtained data suggest that the luminescence is largely from a ligand localized excited state, and the coordination of palladium and copper perturbs the properties of the ligands, leading to the red-shift and increase in intensity of the emission [22, 23].

Supplementary data

Crystallographic data for the structural analysis have been deposited at the Cambridge Crystallographic Data Centre (CCDC) with the deposition number of CCDC 250536 for complex 2. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax: +44-1223-336-033; e-mail: deposit@ccdc.cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgement

The authors gratefully acknowledge the start-up fund of Huazhong University of Science and Technology.

References

[1] (a) P. Espinet, K. Soulantica. Coord. Chem. Rev., 193-195, 499 (1999); (b) G.R. Newkome. Chem. Rev., 93, 2067 (1993); (c) J.P. Casares, P. Espinet, R. Hernando, G. Iturbe, F. Villafañe, D.D. Ellis, A.G. Orpen. Inorg. Chem., 36, 44 (1997); (d) D. Drommi, F. Nicolò, C.G. Arena, G. Bruno, F. Faraone. Inorg. Chim. Acta., 221, 109 (1994).
[2] Z.Z. Zhang, H. Cheng. Coord. Chem. Rev., 147, 1 (1996).
[3] P. Espinet, P. Gómez-Elipe, F. Villafañe. J. Organomet. Chem., 450, 145 (1993).
[4] G.R. Newkome, D.W. Evans, F.R. Fronczek. Inorg. Chem., 26, 3500 (1987).
[5] P. Espinet, R. Hernando, G. Iturbe, F. Villafañe, A.G. Orpen, I. Pascual. Eur. J. Inorg. Chem., 1013 (2000).
[6] Y. Xie, C.L. Lee, Y. Yang, S.J. Rettig, B.R. James. Can. J. Chem., 70, 751 (1992).
[7] G.F. Zhang, J. Zhao, G.R. Sieber, E. Herdtweck, F.E. Kühn. Polyhedron, 21, 1737 (2002).
[8] R.P. Schutte, S.J. Rettig, A.M. Joshi, B.R. James. Inorg. Chem., 36, 5809 (1997).
[9] J.A. Casares, P. Espinet, J.M. Martin-Alvarez, V. Santos. Inorg. Chem., 43, 189 (2004).
[10] R. Clérac, F.A. Cotton, K.R. Dunbar, T. Lu, C.A. Murillo, X. Wang. Inorg. Chem., 39, 3065 (2000).
[11] G.J. Kubas. Inorg. Synth., 19, 90 (1979).
[12] A. Eichhofer. Dissertation, University of Karlsruhe, Germany (1993).
[13] B. Bosnich. J. Chem. Soc. A, 1394 (1966).
[14] F.G. Mann, J. Watson. J. Org. Chem., 13, 502 (1948).
[15] H. Schmidbaur, Y.Z. Inoguchi. Naturforch., 35b, 1329 (1980).
[16] Y. Budnikova, Y. Kargin, J.Y. Nédélec, J. Périchon. J. Organomet. Chem., 575, 63 (1999).
[17] S.L. Schiavo, G.D. Munno, F. Nicolò, G. Tresoldi. J. Chem. Soc., Dalton Trans., 3135 (1994).
[18] F.A. Cotton, J. Gu, C.A. Murillo, D.J. Timmons. J. Am. Chem. Soc., 120, 13280 (1998).
[19] W.H. Chan, S.M. Peng, C.M. Che. J. Chem. Soc., Dalton Trans., 2867 (1998).
[20] D. Li, H.K. Yip, C.M. Che, Z.Y. Zhou, T.C.W. Mak, S.T. Liu. J. Chem. Soc. Dalton Trans., 2445 (1992).
[21] P.D. Harvey, M. Drouin, T. Zhang. Inorg. Chem., 36, 4998 (1997).
[22] (a) D. Li, C.M. Che, H.L. Kwong, V.W.W. Yam. J. Chem. Soc., Dalton Trans., 3325 (1992); (b) D. Li, C.M. Che, W.T. Wong, S.J. Shieh, S.M. Peng. J. Chem. Soc., Dalton Trans., 653 (1993).
[23] J.S. Field, R.J. Haines, M.M. Zulu, B. Warwick. Polyhedron, 15, 3741 (1996).

[^0]: *Corresponding author. Email: tlzhang@mail.hust.edu.cn

